Step 23. Mass currents source frame-drag

\(\nabla^{2}\boldsymbol{\omega} = -\,16\pi\,\mathbf{J}\)

In the same weak, slowly varying limit as Step 22, the source of frame-drag (the shift \(\boldsymbol{\omega}\)) is the mass-current density \(\mathbf{J}\) (matter flowing through space). This is the gravitational analogue of Ampère’s law in electromagnetism: electric currents source the vector potential \(\mathbf{A}\); here, mass currents source the frame-flow potential \(\boldsymbol{\omega}\). In a convenient “gravito-Coulomb” gauge (\(\nabla\!\cdot\!\boldsymbol{\omega}=0\)), Einstein’s equations reduce to the vector Poisson equation

\[ \boxed{ \ \nabla^{2}\boldsymbol{\omega}(\mathbf{x}) \;=\; -\,16\pi\,\mathbf{J}(\mathbf{x}) \ } . \]

  • Static matter (\(\mathbf{J}=0\)) ⇒ no frame-drag: \(\boldsymbol{\omega}=0\) (to leading order).
  • Moving/rotating matter (\(\mathbf{J}\neq 0\)) ⇒ nonzero \(\boldsymbol{\omega}\), and its curl \(\mathbf{B}_g=\nabla\times\boldsymbol{\omega}\) gives the local vorticity of inertial frames (Lense–Thirring effect).

Green’s-function view (boundary \(\boldsymbol{\omega}\!\to\!0\) at infinity): because the source is \(-16\pi\,\mathbf{J}\), the solution is four times the EM analogue,

\[ \boldsymbol{\omega}(\mathbf{x}) \;=\; 4 \int \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|}\,d^{3}x' \quad (\text{quasi-static}). \]

For a slowly rotating body with total angular momentum \(\mathbf{S}\), this yields the familiar \(1/r^{3}\) falloff outside: \(|\boldsymbol{\omega}|\sim 2\,|\mathbf{S}|/r^{3}\) (geometric units), and \(\mathbf{B}_g=\nabla\times\boldsymbol{\omega}\) sets the Lense–Thirring precession rate \(\boldsymbol{\Omega}_{\rm LT}\approx \tfrac12\,\mathbf{B}_g\).

Mini-Glossary

Symbol Name Meaning Value / Units Metaphor
\(\boldsymbol{\omega}(\mathbf{x})\) frame-drag (shift) potential vector potential for frame flow velocity-like (geom. units) “River-of-space current”
\(\mathbf{J}(\mathbf{x})\) mass-current density density × velocity of matter mass/(area·time) (or energy flux) “Traffic of matter through space”
\(\nabla^{2}\) Laplacian vector Laplacian acting componentwise 1/length\(^2\) “How tightly the flow lines curve”
\(\mathbf{B}_g\) gravito-magnetic field \(\nabla\times\boldsymbol{\omega}\); frame vorticity 1/length “Swirl of the river”
\(\boldsymbol{\Omega}_{\rm LT}\) Lense–Thirring precession gyro precession from frame drag \(\approx \tfrac12\,\mathbf{B}_g\) “Slow twist a gyro feels in the whirlpool”
\(\mathbf{S}\) total angular momentum (of source) integrated spin of the body angular momentum “Overall spin of the eddy making the swirl”
gauge \(\nabla\!\cdot\!\boldsymbol{\omega}=0\) gravito-Coulomb gauge removes pure-gauge pieces of \(\boldsymbol{\omega}\) condition “Choose a quiet reference flow”