In the same weak, slowly varying limit as Step 22, the source of frame-drag (the shift \(\boldsymbol{\omega}\)) is the mass-current density \(\mathbf{J}\) (matter flowing through space). This is the gravitational analogue of Ampère’s law in electromagnetism: electric currents source the vector potential \(\mathbf{A}\); here, mass currents source the frame-flow potential \(\boldsymbol{\omega}\). In a convenient “gravito-Coulomb” gauge (\(\nabla\!\cdot\!\boldsymbol{\omega}=0\)), Einstein’s equations reduce to the vector Poisson equation
\[ \boxed{ \ \nabla^{2}\boldsymbol{\omega}(\mathbf{x}) \;=\; -\,16\pi\,\mathbf{J}(\mathbf{x}) \ } . \]
Green’s-function view (boundary \(\boldsymbol{\omega}\!\to\!0\) at infinity): because the source is \(-16\pi\,\mathbf{J}\), the solution is four times the EM analogue,
\[ \boldsymbol{\omega}(\mathbf{x}) \;=\; 4 \int \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x}-\mathbf{x}'|}\,d^{3}x' \quad (\text{quasi-static}). \]
For a slowly rotating body with total angular momentum \(\mathbf{S}\), this yields the familiar \(1/r^{3}\) falloff outside: \(|\boldsymbol{\omega}|\sim 2\,|\mathbf{S}|/r^{3}\) (geometric units), and \(\mathbf{B}_g=\nabla\times\boldsymbol{\omega}\) sets the Lense–Thirring precession rate \(\boldsymbol{\Omega}_{\rm LT}\approx \tfrac12\,\mathbf{B}_g\).
Symbol | Name | Meaning | Value / Units | Metaphor |
---|---|---|---|---|
\(\boldsymbol{\omega}(\mathbf{x})\) | frame-drag (shift) potential | vector potential for frame flow | velocity-like (geom. units) | “River-of-space current” |
\(\mathbf{J}(\mathbf{x})\) | mass-current density | density × velocity of matter | mass/(area·time) (or energy flux) | “Traffic of matter through space” |
\(\nabla^{2}\) | Laplacian | vector Laplacian acting componentwise | 1/length\(^2\) | “How tightly the flow lines curve” |
\(\mathbf{B}_g\) | gravito-magnetic field | \(\nabla\times\boldsymbol{\omega}\); frame vorticity | 1/length | “Swirl of the river” |
\(\boldsymbol{\Omega}_{\rm LT}\) | Lense–Thirring precession | gyro precession from frame drag | \(\approx \tfrac12\,\mathbf{B}_g\) | “Slow twist a gyro feels in the whirlpool” |
\(\mathbf{S}\) | total angular momentum (of source) | integrated spin of the body | angular momentum | “Overall spin of the eddy making the swirl” |
gauge \(\nabla\!\cdot\!\boldsymbol{\omega}=0\) | gravito-Coulomb gauge | removes pure-gauge pieces of \(\boldsymbol{\omega}\) | condition | “Choose a quiet reference flow” |