Chapter 2 — The Temporal–Optics Map \(n=e^{\Phi}\)

The key idea: the local rate of time sets an optical index. Light moves as if it is in a medium with \(n=e^{\Phi}\).

Goal of this chapter

  • State the lapse-first metric and extract a travel-time functional.
  • Show how the eikonal limit gives an effective refractive index.
  • Record validity conditions for the static map. Save drift for Chapter 5.

Set-up and assumptions

We write the metric in lapse-first form. The lapse controls clock rate. The spatial metric carries shape.

\[ ds^2 = -e^{2\Phi(t,\mathbf{x})}\,dt^2 \;+\; e^{-2\Phi(t,\mathbf{x})}\,\gamma_{ij}(t,\mathbf{x})\,dx^i dx^j. \]

Null rays satisfy \(ds^2=0\). We work in the eikonal limit. The geometry varies slowly across a wavelength.

Convention note. This guide uses \(n=e^{\Phi}\). Parts of the paper use \(n_{\gamma}=e^{-2\Phi}\). They are equivalent in the optical limit with \(n_{\gamma}=n^{-2}\). We flag the choice when needed.

Derivation: from metric to index

Step 1 — Turn null condition into a time functional

Set \(ds^2=0\) and solve for \(dt\) along a spatial path with element \(d\ell\).

\[ e^{2\Phi}\,dt^2 \;=\; e^{-2\Phi}\,\gamma_{ij}\,dx^i dx^j \quad\Rightarrow\quad dt \;=\; e^{-2\Phi}\,\frac{\sqrt{\gamma_{ij}\,dx^i dx^j}}{1} \;=\; e^{-2\Phi}\,d\ell_{\gamma}. \]

Here \(d\ell_{\gamma}=\sqrt{\gamma_{ij}\,dx^i dx^j}\) is the spatial line element for \(\gamma_{ij}\).

Step 2 — Factor out a baseline

The coordinate travel time is a path integral. Subtract the vacuum baseline to define the excess time.

\[ T \;=\; \int dt \;=\; \int e^{-2\Phi}\,d\ell_{\gamma}, \qquad \Delta T \;\equiv\; T - \frac{1}{c}\int d\ell. \]

Step 3 — Identify the effective index

Define the physical path element \(d\ell\) so that the travel-time functional reads like Fermat’s principle.

\[ \Delta T \;\simeq\; \frac{1}{c}\int \big(n-1\big)\,d\ell, \qquad \boxed{\,n(\mathbf{x},t)=e^{\Phi(\mathbf{x},t)}\,}. \]

This is the temporal–optics map. The same physics appears if you use \(n_{\gamma}=e^{-2\Phi}\). Then \(n_{\gamma}=n^{-2}\).

Step 4 — Ray equation (optional peek)

Stationary travel time yields Fermat’s equation. Rays curve where the index changes across the path.

\[ \boldsymbol{\alpha}(\hat{\mathbf n}) \;\simeq\; \int \nabla_{\!\perp}\Phi\,d\ell, \]

We use this for bending in Chapter 4.

Step 5 — Static limit vs. evolving fields

The map above is static. If \(\Phi\) evolves during propagation, the arrival time drifts. We handle that in Chapter 5.

\[ \frac{d}{dt_{\mathrm{obs}}}\Delta T \;\simeq\; -\,\frac{2}{c}\int \partial_t\Phi\,d\ell. \]

Validity and small parameters

  • Quasi-static along the path: \(\bigl|\partial_t\Phi/\Phi\bigr|\,T_{\mathrm{path}} \ll 1\).
  • Slow geometry change: \(\epsilon_{\mathrm{lens}} \equiv L_{\mathrm{lens}}/(c\,\tau_{\mathrm{var}}) \ll 1\).
  • Eikonal limit: background varies slowly across a wavelength.

Sanity checks

  • \(\Phi=0 \Rightarrow n=1\). Travel time reduces to \(\ell/c\).
  • Weak field: \(\Phi\ll 1 \Rightarrow n \approx 1+\Phi\). You recover standard linearized optics.
  • Isotropic static lens: Chapter 3 reproduces Shapiro timing from \(\Delta T\).

Common pitfalls

  • Do not mix \(n=e^{\Phi}\) and \(n_{\gamma}=e^{-2\Phi}\) in the same calculation without converting. Use \(n_{\gamma}=n^{-2}\).
  • Use \(d\ell\) consistently for the path element. Keep \(dz\) for the unperturbed ray if you need a longitudinal coordinate.
  • Do not include drift terms in static forecasts. Use Chapter 5 for \(\partial_t\Phi\neq 0\).

What you have now

The map \(n=e^{\Phi}\). A travel-time functional \(\Delta T \simeq \frac{1}{c}\int (n-1)\,d\ell\). A clear split between static predictions and time-variable drift.